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We extend recent fluxflux autocorrelation function methods for the direct computation of thermal reaction
rate constants and unimolecular recombination rates to the case where both reaction and recombination are
possible. Rather than a single transition state dividing surface, dividing surfaces are placed on both the
reactant (r) and product (p) sides of the intermediate collision complex region. The thermal recombination
rate expression then involves a flux cross-correlation fundiig(t) in addition to the usual autocorrelation
function Cy(t), both of which are computed during a single quantum time propagation. This method is applied
to the three-dimensional @ OH = H + O, (J = 0) reactions, employing parallel computation because of

the necessary large basis¥grid points) and long propagation times<2 ps). Thermal rate constants (in

the absence of recombination effects) are presentetl #0600—2000 K, using th&-shifting approximation

to account for nonzero total angular momentum; good agreement is found with experimental measurements
of both forward and reverse rate constants. Collisional recombination by a bath gas is included via the strong
collision assumption, and rate constants for the competing OH reaction (H+ O,) and recombination

(HO,) channels are calculated as a function of collision frequency, i.e., pressure of the bath gas.

I. Introduction Two applications of this new quantum theory of recombina-
tion have been reported thus far: Qi and Bowfddreated the

H + CO— HCO recombination; Mandelshtaet al!2 carried

out similar calculations for H- O, — HO; at energies below
the threshold for the & OH product channel. In both cases
the quantum time evolution operators needed to construct the
flux correlation functions (see below) were obtained by diago-
nalizing the Hamiltonian (including an absorbing potential in
the asymptotic region) in an?lbasis set.

In this paper we generalize the previous quantum theory of
combination to include both chemical reaction as well as
recombination, i.e.,

A great deal of progress has been made in recent y&drs
one’s ability to carry out rigorous quantum mechanical calcula-
tions of chemical reaction rates by using fluftux time
correlation function§:” The primary feature that makes this
approach efficient is that one calculates the rate constant
“directly”, avoiding the need to solve the full state-to-state
reactive scattering problem and then to average the resulting
cross sections over the appropriate distribution of initial and
final states. The approach has vestiges of transition state theorylre
and the efficiencies resulting therefrom, but it is an exact

formulation.
It has also recently been shotmow a quantum mechanical A +BC=ABC* —AB +C (1.2a)
version of the Lindemann mechanifior collisional recom-
bination ABC* + M — ABC + M (1.2b)
A + B = AB* (1.1a) One is thus able to describe simultaneously the recombination
reaction (A+ BC — ABC), the effect of pressure (of the bath
AB* + M —AB + M (1.1b) gas M) on the exchange reaction ¢ABC — AB + C), and

the competition between the two.

can be expressed in terms of the flux correlation function for Application of this theory is then made to the important
the A-B collision (eq 1.1a) provided one uses the strong oactions

collision approximation (SCA) for the energy relaxation step

(eq 1.1b). (It has also been sho\Wimow this theory can be O+OH=H+O0O,

generalized to go beyond the SCA, but this requires more than

just the flux correlation function for the AB collision.) This which are central to combustion processes, with the reverse
formulation eliminates both the ambiguities that arise when one reaction providing the key radical chain branching $te§The

is required to identify the energies and lifetimes of individual competition between these reactions and the recombination
resonances in the A B = AB* collision process, and also  reactions

unphysical features that appear in the collision lifetime ap-
proacht! O+OH+M—HO,—~H+0O,+M

€ Abstract published irAdvance ACS Abstractsuly 15, 1997. which act as chain termination steps, largely determines the
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second explosion limit> These reactions are also of great L
interest in atomospheric chemistry because of the importance s 5 b ;
of the HG, radical in the catalytic removal of stratospheric k . ;
ozonelé

Section Il first describes the extension of the earlier quantum
mechanical collisional recombination thebfgr the case where
both reaction and recombination are present. Rather than
utilizing a single dividing surface as is customary for the usual
flux—flux autocorrelation function, one needs to introduce
dividing surfaces on both the reactant (r) and product (p) sides
of the region defining the collision complex and to construct
the r—p cross-correlation function as well as the usualr]r
autocorrelation function. Section Il describes the approach of Figure 1. One-dimensional schematic diagram of the interaction
Thompson and Millérthat we have used to evaluate the flux Potential for the Or OH— H + O, reaction versus reaction coordinate

. . . o . ._ s The HQ collision complex region is bounded by dividing surfaces

correlation functlons, here, it is not necessary to dlagonallze on reactantg) and product$) sides,s < s < .
the complex Hamiltonian (which would be quite impossible)
but only to propagate (via the split operator algorithm) a F, is given by
relatively small number of eigenvectors of the Boltzmannized
flux operator, ef¥2FefH2. Special considerations for ap- d ah,(a)
plication on massively parallel computers are also discussed and F= d_thr(q) = W
are very effective in this case because of the large size of the
basis (28 grid points) and long propagation times—2 ps). where the last equality applies only for Cartesian coordinates
Section IV then presents results for the © OH system. and momenta. Similarlyhy(q) is the Heaviside function that
Although only calculations for zero total angular momentum is 0(1) for positiongy to the left (right) of the product dividing
have been performed) > 0 rates may be included ap- surfaces, The difference of these two Heaviside functions,
proximately with the J-shifting approximatiordY enabling

HO,

‘p/m (2.2)

comparison with experimental measurements of both forward hy(a) = h(a) — h,(q) (2.3)
and reverse rate constants over the temperature fargg00— _ . L
2000 K. Pressure-dependent fall-off curves for the-GDH is therefore 1 for positiong betweerthe two dividing surfaces

— HO, recombination rate, as well as the pressure-induced (I-€:, in the “complex” region) and zero outside. Since-1

dampening of the forward and reverse reaction rate constants€ ' is the probability of the system experiencing a (deactivating)

are readily computed from the same pair of correlation functions. collision with the bath gas in the time interval {0, the
Finally, it should be emphasized again that although the fécombination probability is

present approach does an excellent job of describing the first — wr(pya)

step in the Lindemann mechanism, i.e., the bimolecular dynam- PrecomfP1,01) =1—€ ’ (2.4a)

icsineq 1.1a or eq 1.2a, it treats the second (energy relaxation) ) . . .

step, eq 1.1b or eq 1.2b, via the comparatively primitive strong wherez(p1,0s1) is the time the trajectory (having beguntat 0

collision approximation. Though the SCA can be made more ©N s) exits the complex region. This can also be expressed as

realistic by definind® the collision frequencw as an effective . d

(temperature and species dependent) frequency, one can only  PocomdP1,.01,0) = fo dt hC(q(t))d_t 1-—e (2.4b)

incorporate a more complete description of collisions with the

third pody M (akin to a cla.ssi'cal master equat.ion treatdent  \yhich with an integration by parts becomes

by going to the more sophisticated approach in ref 10.

. Y —wt _ _
Il. Flux Correlation Approach to Thermal Reaction and Precomf{P1:d1:) = j;) dt (e DEWD = F0) (240
Recombination Rates

. d d

To generalize the previous quantum version of the Lindemann (smcg F(t) = d—th,(q(t)) and Fy(t) = &hp(q(t)))' To .have
mechanism for recombination (eq 1.1), it is useful (as before) réaction, on the other hand, the trajectory must exit through
to begin with aclassicaldescription of the processes, i.e., what dividing surfaces, and not have suffered a collision before it
would be done in a classical trajectory simulation. Referring féaches it i.e.,
to Figure 1 for the O+ OH — H + O, HO; system, the . oL
classical rate constants for reactiontHO, and recombination Preaction= Pwr(pl’ql) =e " (2.53)
(HO,) are both given as averages of the reactant flux over a

Boltzmann distribution of initial conditions for classical trajec- Wherezp is the time the trajectory exits througp This can

be written as

tories

— o d —
k(™) = P =[5 dt (1= hya®)) € ' (2.5b)

[Q(M]*(27h) " [dp, [da, e PP+ F (p,,q.)P(p,,0,) o _

@2.1) which with an integration by parts becomes

whereF,(p1,0.) is the flux factor related to the reactant dividing Por = ﬁ,oo dt F(te " (2.5¢)
surfaces in Figure 1 andP(p1,qy) is the probability of either
reaction or recombination as the case may beh(H) is the With the recombination and reaction proabilities given by
Heaviside (step) function that is 0(1) for positicgpsgo the left egs 2.4c and 2.5c, respectively, eq 2.1 gives the rate constants

(right) of the dividing surfacs: in Figure 1, then the flux factor  in terms of the flux correlation functions,
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KecomfT) = [Q(MI " [ dt (€7 — 1)(C,(t) — C(t)
(2.6a)

koD =[QMI [, dte™Ct)  (2.6b) R

where

C.(t)= (Zﬂ'h)iffdplqul e MPUE (p,,q.)F (py.0st) @ 7 @
(2.7a) r

Figure 2. Jacobi coordinates for H O..
Co®) = (27h) ' fdp, [da, & PR (p,q,)F(Podst) °
(2.7b) R the distance between the H atom angdd®nter-of-mass, and
y the angle betweeR andr. In this coordinate system, thke
The transcription of eqs 2.6a and 2.6b to quantum mechanics= 0 Hamiltonian is given by
simply involves replacing the classical flux correlation functions

of egs 2.7a and 2.7b by their quantum mechanical counterparts, b= 2%8?2 _ %8_2 ( 1Rz n 1 2)|2 +V(Rr)
C,(t) = Tr[e PV2F e M2 dHVRE o 1HUR (2 8a) RO ot \He ux (3.1)
Cylt) = Tr[e PH2E, e 12 e”q”hf:p e (2.8b)  wherel is the orbital angular momemtum operator for H rotation

about the @ center-of-mass, andgr and u, are the reduced

As in the previous caskit is worth emphasizing that these masses associated with tReandr coordinates, respectively.
correlation functions are properties of the isolated bimolecular We use the DMBE IV potential energy surface (PES) of
reaction dynamics only and that the collision frequenanters Pastranaet all® on which several quasiclassic¢d?® quantum
only as a damping factor in the time integrals of these correlation mechanical??¥2% and transition state thedty?® studies have
functions (eq 2.6). been carried out. Relative to the asymptotic?$i( +

Itis not hard to see that egs 2.6a and 2.6b reduce to previousO,(°%,;) channel, the H@?A") well depth is—2.378 35 eV,
results in appropriate limits. For example, if the exchange and the OfP) + OH(II) channel is at 0.581 51 eV. The long-
reaction channel is closed, thég,(t) — 0, and eq 2.6 reduces  range O+ OH interaction is dominated by dipetejuadrupole
to the earlier quantum expression for the recombination rate. forces?” which favor a linear OH-O geometry and culminate

Also, in the limit of zero pressure (i.ay = 0), the recombina- in a weakly stable<0.098 eV) hydrogen-bonded structure at
tion rate vanishes, and eq 2.6b, for the reaction rate is an H--O distance of 3.82h,. A shallow barrier, 0.027 eV
above the OH-O minimum, precedes the deep ki®ell, with
l!in—o ky—(T) = [Q(T)] ﬁ) dt C(t) (2.9a) the H atom rotating out to a HOO angle of 4D the barrier

and 104.29at the HQ minimum. No barrier is found between
1 pe the HQ, well and H+ O, products.
=[Q(M)] ﬂ) dt C,(t) (2.90) A slight adjustment of the DMBE IV PES, involving a simple
linear rescaling of the coordinates, has been suggested recently
where we have noted that the two dividing surfaces can be takenbyt apparently not used y&. Kendrick and Pack have
to be the same or different for an isolated bimolecular reaction. developed an entirely new multivalued PEBitended to better
As will be seen in section 1V, though, for cases where a long- describe the system near conical intersections and permit the
lived collision complex is formed, as in the present example, study of geometric phase and nonadiabatic effécid/e neglect
use of eq 2.9a is more stable numerically, since it avoids these effects in using the single DMBE IV surface.
cancellation of two large and approximately equal contributions. B, Basis Set. As in earlier work?22we employ a discrete
The equivalence of eqs 2.9a and 2.9b also means that theyariable representation (DVR) basis set of grid po#it33 The
collisional factor €' — 1 in eq 2.6a can formally be replaced radial R andr coordinates are represented by equally spaced
by e~*, but for numerical stability it is better to stay with the  points appropriate for a sinc function DV®however, for the

original version. _ o present parallel implementation (see below), taking these points
Finally, we note that the earlier quantum recombination (but as a Fourier grid representation is advantageous. The angular
nonreactive) calculations by Qi and Bowrddand by Man-  coordinatey is represented by a Gausisegendre DVR, using

delshtamet al!® were carried out in a time-independent only odd functions because of the symmetry requirements upon
approach: the Hamiltonian plus a negative imaginary (absorb- interchange of the two oxygen atorffs.We find that a fixed

ing) potential H — i¢, was diagonalized in ar? basis, the traces  pasis size of 64 128 x 32 grid points R x r x ) is sufficient,

in egs 2.8a and 2.8b carried out in the basis of these eigen-with R €[0.1, 7.6] andr €[2, 8]. The restriction to powers of
functions, and the time integral in egs 2.6a and 2.6b then 2 arises from both the Fourier representation and the data-
(trivially) evaluated. Though we do not use this approach in parallel implementation described below.

our present calculations, the Appendix gives the appropriate  This grid size corresponds to roughly 20 grid points per
formulas for such an approach to the reaction/recombination thermal de Broglie wavelength,

rates of eqs 2.6a and 2.6b.
. . 27 Z,ukBT —1/2
[ll. Computational Details Ng = Ax )

(3.2)

A. Reaction Coordinates and HQ Potential Energy
Surface. Jacobi coordiates for the H O, arrangement are  at T = 500 K andNg = 10 atT = 2000 K, in bothR andr
used, as shown in Figure 2. Heré the O-0O bond distance, coordinates. Ax denotes the spacing between grid points.) We
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begin to encounter convergence problems Wigh< 10, as also
observed in earlier applicatioAsWe also note the comparable
grid size of 60x 213 x 32 used in the calculation of the
cumulative reaction probabiliti)(E) for this reactior??

C. Calculation of Flux Correlation Functions. The
correlation function€;(t) andCip(t) are most easily calculated
by evaluating the traces in terms of the eigenfunctions of the
Boltzmannized (thermal) flux operasr

ﬁ,(ﬂ) — e—ﬁﬂ/zrzr e—/iFi/Z

that is relative to the reactant dividing surfage Denoting the
eigenfunctions and corresponding eigenvalues|ibyand 4,
respectively, we have

C,(t) = Tr[e PH2F, e P2 dHURE g iHUA] (3.3a)
— z[n' e—ﬁﬂ/zlgr L eiﬂt/hl’ir e—iﬂt/h“D (3.3b)

]
= z/limei“"hﬁr e Hhin (3.3c)

I
==2Ammﬁmmm (3.3d)

I

where|i(t)(denotes the thermal flux eigenfunctiphpropagated
to timet,

li) 0= e i (3.4)
Similarly,

Cold = S AIMIFi®)0 (3.5)
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conveniently defined in terms of either tReJacobi coordinate
(e.g.,R= 6ap) or the shortest ©H distance (e.gron = 3.53).

D. Time Propagation and Use of Absorbing Potentials.
In order to perform the propagation, we use the split operator
algorithm38 Writing the Hamiltonian in eq 3.1 as

H=Te+T,+T,+V (3.7)
we can form the split operator propagator
efi(Fifié)Atlh ~
efi(\*/fiamjzn efﬁi,AtIZh efi'AI'RAt/h efﬁ'rAtlh efi‘AI',,AtIZh efi(\A/fiE)AtIZh
(3.8)

The 1D free-particle propagator&At is applied by using the
fast Fourier transform (FFT) to convert from positiéhto
momentum pgr representation, in which the propagator is
diagonal, and then a second FFT to return to position space.
The e ™A% term is handled in a similar fashion, while the
angular propagator&-Ath is done using the Gaussegendre
DVR.

This choice of the split operator expression is determined
primarily by (parallel) computational considerations; although
the potential referenced expression generally permits a slightly
larger time step than the kinetic referenced expression of eq
3.8 under normal circumstanc&sit would require two ap-
plications of each 1D kinetic propagator. Since these terms
involve nonlocal operations, from a computational standpoint
it is much more desirable to split the localizéd- i€ operator
instead. Either way, we would have to split the angular kinetic
term e T,AtR but fortunately, the number of angular DVR points
required is generally small.

We find that a timestep as long & = 20 or 30 au (0.5
0.7 fs) is adequate for the real-time propagation, while a slightly
smaller time stepht = 10 au is generally used for the imaginary-

so that both correlation functions are obtained by propagating time propagation of the Boltzmann operatoPf&2,

the same set of thermal flux eigenfunctions.

The Lanczos algorithit is a useful method for finding the
largest eigenvalues (and associated eigenvectors} (8).2
Starting with a random initial vector, a Krylov space is formed
by successive application &%(5), with complete orthogonal-
ization at each step. Diagonalization of the tridiagonal matrix
representation oF(3) in this Krylov basis yields the largest

To avoid unphysical reflection from the boundaries of the
DVR grid, we employ absorbing potentialsin each arrange-
ment z, taken as a function of some coordinatefor each
arrangement (see Figure 1). Two convenient choices are the
translational Jacobi coordinate for each arrangenigngr the
Jacobi coordinateR andr in which the grid is set up. For the
form of the absorbing potentials, the quartic potential has proven

(in absolute value) eigenvalues and their associated eigenvectorsto be a robust choice,
These eigenvalues are monitored at each Lanczos iteration, and

the procedure is halted whenever the sum of absolute values of

these eigenvalues changes by a small fraction, such&sot0
1073, The eigenvectors in the original coordinate grid repre-

rr - rOr 4
e(r) =Al———— (3.9
Fmaxz ~ Tos

sentation are then constructed by taking appropriate linearwherero, andrmax, are the starting and ending points of the

combinations of the Krylov vectors.
As in previous worlké we find the most convenient expression
for the flux operator to be

IO TN
F=+{H, h(s(a))] (3.6a)
For a dividing surface which is only a function Bfandr, this
reduces to
PO TN i A
F=2Tr N(S@)] + 21T, h(s(@))] (3.6b)
which is readily evaluated in either sinc-DVR or finite difference
representations of the 1D operatdigandT,.
The (O + OH) reactant dividing surface is chosenrat

6.535, beyond the G-O distance (= 5.663) at the hydrogen-
bonded minimum. The H- O, product dividing surface is most

absorbing potential in the arrangement. Typical parameters
arel = 1 eV and an absorbing potential width Gfax; — o
= lay.

E. Parallel implementation. In order to implement the
present method on massively parallel computers, we must first
decide the basic quantity to parallelize. In this case, there are
two obvious choices: either individual thermal flux eigenfunc-
tions may be placed on separate processors, requiring much
interprocessor communication during the Lanczos process but
subsequently allowing independent propagation of the thermal
flux eigenfunctions, or the DVR grid (i.e., coordinate space
itself) may be partitioned among processors. In the former
approach, each processor stores (and propagates) one or more
complete thermal flux eigenfunctions, while in the latter case
each processor contains a segment (corresponding to its portion
of coordinate space) of every thermal flux eigenfunction so that
the propagations involve a joint effort among processors.
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Since we expect (and show below that it is indeed the case) K ((T) = 2.7 x 10 37%4 87207 (3.12)
that a relatively small number of thermal flux eigenfunctions is e

needed, the former approach of assigning a separate eigenfunc- an additional reason for taking this indirect approach is that
tion to each processor would be limited to a number of e O@P) + OH(II) reactants correlate with both tHa”
processors equal to the number of eigenfunctions, whereas Weyround surface an@A’ first excited surface of HE which in
would hope to take full advantage of the 128 or 256 processors ; 3y~ 1
commonly available on most massively parallel computer tumn correlate Wlth the HE) M Oz(’%,) and HES + O('Ag

y y par .~ _products, respectively. At high enough temperatures (probably
systems. Thus, we adopt the latter perspective and partitionjnc|yding those considered here), this singlet oxygen channel
coordinate spac@mong processors. L via HO,(?A") can become significant and must be taken into
~ In order to proceed in this manner, we must minimize the accounti546 Since this is beyond the scope of the present work,
interprocessor communication required during application of the |yo adopt the above approach of using the experimental
flux and Hamiltonian propagation operators. Since the potential gqyilibrium constant to define an effective partition function
operator is entirely local in the DVR grid basis, the only 4, the O+ OH reactants.
remaining question is the kinetic operators. In previous work J-Shifting. In the J-shifting approximatiord? it is

on the parallel implementation of direct cumulative reaction 55sumed that the overall rotation is decoupled from internal

probability calculations? we have found a five- or seven-point  mqtion and, therefore, that its effect is merely to add a constant
finite difference representation of the second derivative terms JK

. - . rotational energy term’.; to theJ = 0 Hamiltonian of eq 3.1.
rather than the full-fledged sinc function DVRto provide an gy rot q

; ._For thermal rate constants, this corresponds to the multiplication
adequate balance between data locality and accuracy for radiajy¢ yhe 3 = g rate by an additional rotational partition function
degrees of freedom. A seven-point finite difference a

3 L PProXima- ¢o; the entire complex
tion is thus used for th@&g and T, operators in eq 3.6b. P,

However, for the time evolution part of the calculation, the ® J
necessary time step for finite-difference schemes is too short Q= Zo (22+1) Z g fi (3.13)
to be of practical use. Instead, we have chosen the fast Fourier = K==J
Transform (FFT) approach to switch between coordinate and
momentum representations, as described following eq 3.8. We estimate the rotational energig} by treating the H@
Although the FFT approach, like the sinc-function DVR, complex as a rigid rotor fixed at its equilibrium geometry, with
requires an “all-to-all” communication across fRandr degrees  rotational constant&* = 18.94 cm?, Bf = 0.589 cm?, and
of freedom and thus is highly nonlocal, FFT algorithms are C* = 0.572 cnt®. Nearly identical results are obtained using
inherently paralléft and thus can be quite efficient for our either the classical expression 1Qf,,
purposes. (This is only true for densely connected architectures,

in particular hypercube networks; communication bottlenecks + ﬂ(kBT)3 vz
may arise on loosely connected architectures such as rings and Qo= ABFCH (3.14)
meshes.)
F. Reactant Partition Functions. The HES) + O(3%,) or numerical evaluation of eq 3.13 with symmetric top rotational
partition function is given by constantsA* andB* = (B* + C*)/2. At T = 500 and 2000 K,
the sum over the total angular momentum in eq 3.13 must run
QM = QueRui Qo RPurans (3.10) to J = 52 and 105, respectively, in order to obtain 99% of the

total. The Iargleot('D values, ranging from 4549 to 36 375
where Qqec = 8- is the electronic degeneracy divided by the over this temperature range, also indicate how minisculel the
two equivalent arrangements (since the Gatisgendre DVR = 0 contribution is and, thus, how important it is to have an
is restricted to one half-planeR.i» and Q. are the usual  accurate estimate of thk> 0 contributions.
vibrational and rotational partition functions, a@gans= (uksT/ . )

(27h2))32is the translational partition function per unit volume V. Results and Discussion

for the relative motion of H and © _ _ A. Thermal Flux Eigenfunctions. The required computa-
The OFP) + OH(II) partition function also includes  tional effort will be proportional to two factors: the number of
electronic factors accounting for tﬁEzylyospln_Ol'blt states of thermal flux eigenvectors that must be propagated and the

O and the’I1a2,1 OH spin doublet” 42 amount of propagation time required. Owing to the large
number of HQ bound states and resonances, we anticipate a
Qe = [5+3 g 22T 4 g 32&M ) 4 9 20T large propagation time; we will return to this issue below.
(3.11) In one dimension, the thermal flux operator has only two

nonzero eigenvalues, one positive and one negative, with
However, the OH rotational partition function is somewhat identical magnitudes, corresponding to flux in the forward and
problematic, since at low energies the coupling of spin and backward directiond® Additional degrees of freedom lead to
orbital angular momenta is best described by Hund’s case a,a set of activated complex states in the transition state theory
while higher rotational energy levels are more nearly ap- picture; the nonzero eigenvalues still occur in pairs, one for
proximated by case . We have computed rovibrational each accessible state of the activated complex. Figure 3 shows
partition functions using either case a, involving half-integral the magnitudes of these eigenvalues for several temperatures
rotational quantum numbejsor case b, with integral quantum  relative to the largest eigenvalue at each temperature. The
numbersN = 1, 2, 3, ... Since these results differ by a few number of eigenvalue pairs required is seen to increase from
percent, the rate constants reported below use a simpler, albeitLO or 12 atT = 600 K to nearly 25 aT = 2000 K. Thus, the
indirect approach: dividing the H O, partition function by total number of eigenfunctions that must be propagated-is 20
the H+ O, — O + OH equilibrium constant, which is given 50, not a great deal more than is often required. If a much
within a tenth of a percent over the temperature range of interestgreater number were necessary, it would make sense to employ
by the expressidi a different parallelization scheme and do theopagations
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Figure 3. Positive thermal flux eigenvalues far= 600, 800, 1000,
1200, 1600, and 2000 K. Note that the eigenvalues occtitf pirs so
that the actual number of eigenvalues required is twice that shown.

0.04 L

0.02 -

-0.02 | J

-0.04 | 4

0.0040

0.0035

0.0030

0.0025

= 0.0020 } .
=S
S 0.0015 | .

0.0010

T
L

0.0005

-0. 5 N N s
0.000 o 1.5 2.0 25

time (ps)
Figure 4. Flux—flux correlation functionsC.(t) (top panel) andC(t)
(bottom panel) for the OH- O — H + O, reaction atfT = 1200 K.
Both correlation functions are shown relative to the reactant flux
autocorrelation function at zero tim€,(0).
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separately on different processors rather than dividing each
functionamong processors.

B. Flux—Flux Correlation Functions. The flux—flux
autocorrelation functiorCy(t) and cross-correlation function
Cip(t) are shown in Figure 4 fof = 1200 K. Both correlation
functions are scaled bg,(0); the initial decay of the autocor-
relation function occurs within a few femtosecondsiff = 6
fs),” so the plot ofCy(t) is magnified to show the subsequent
oscillations. A significant amount of recrossing is observed,
with a highly structured negative lobe lasting for approximately
300 fs, followed by smaller positive and negative lobes
corresponding to breakup of the metastable,ld@mplex into
products and reactants, respectively.
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This recrossing fraction can be quantified by comparing the
area under the initial positive lobe (up to the first zerdgat
with the total area

Jodtc.
[iodt C ()

KM =

(4.1)

This is readily identified as the transmission coefficient cor-
rection to the quantum transition state theory proposed by Tromp
and Miller*” which relates the thermal rate constant to the area
under the initial positive lobe of the flux autocorrelation
function,

kourst(D) = [QMI ™ [t C,(t) (4.2)

so that the true quantum rate constark(iB) = «(T)komrst(T).

From theT = 1200 K autocorrelation function in Figure 4, we
find « = 0.310, meaning that 69% of the initial flux into the
complex region recrosses back to reactants. This of course is
dependent upon the position of the reactant-dividing surface,
but similar values are obtained for several reasonable choices.
As the temperature is increased,increases slightly andy
decreases slightly. Miller has found a similar recrossing fraction
in his quasiclassical trajectory calculations, where-68% of

the HO complexes recross to give © OH reactants over the
500—-2000 K temperature range considered Hére.

(The even larger recrossing for thetHO, reactants;3 99%,
causes enormous cancellation in the time integraCgf) for
this direction. The magnitude @f(T) for this uphill reaction
can be estimated by the Boltzmann facE?¥AE, which is
roughly 106 at 500 K and~0.03 at 2000 K. Therefore, the
present work is limited to the study of ® OH + M reaction
and recombination and does not consider that of-HD, +
M.)

The cross-correlation function is initially zero, until the
propagated (reactant) thermal flux eigenfunctions reach the
product dividing surface and a large positive lobe occurs, lasting
several hundred femtoseconds. Since a negative contribution
to Cip(t) corresponds to the unlikely event of-H O, products
“turning around” and re-entering the H@omplex region, no
such lobe is expected, nor is one observed.

C. Thermal Rate Constants. From egs 2.9a and 2.9b, the
J = 0 thermal rate constant may be obtained from the time
integrals of eitherCy(t) or Cy(t), as shown in Figure 5. As
expected, the abundant recrossing in the autocorrelation function
leads to a great deal of cancellation in the time integral, while
the integral of the cross-correlation function increases nearly
monotonically. This seems to suggest that us€gft) may
be a more efficient approach to the thermal rate constant for
cases where significant recrossingdm(t) occurs. At 1 ps the
two rates agree with each other (and with the final converged
rates) to a few percent, probably the ultimate accuracy obtainable
with such calculations. All calculations reported here have been
propagated a bit further, to 3 or 4 ps, to lessen the discrepancy
between egs 2.9a and 2.9b.

As a check of the validity of using the thermal flux
eigenvalues as a measure of the number of required eigenvectors,
Figure 6 shows thel = 0 rate constant versus number of
Lanczos iterations (or equivalently, number of thermal flux
eigenfunctions) af = 1000 K. The rate (computed from either
Cu(t) or Ci(t)) appears to converge with around 30 iterations,
in good agreement with the 15 pairs of significant eigenvalues
in Figure 3.
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In Figure 7 we compare our thermal rate constants with

experimentally measured rates for thetHO, (refs 49-51)
and O+ OH (refs 52 and 53) reactions. Good agreement is
found over the entire temperature range, with the high-
temperature calculations lying in the middle of the widely
scattered experimental measurements. At lower temperatures,
the present results underestimate the experimental rates (which
are known quite accurately). Whether this is due to the
J-shifting approximation or deficiencies in the potential energy
surface (including its treatment as a single electronic surface)
is unknown. At temperatures below 500 K, we have been
unable to obtain converged thermal eigenvalues and eigenfunc-
tions; these numerical difficulties are evident at 500 K but are
unlikely to account for the entire discrepancy between experi-

' ‘ ' . . mental and calculated rates.
i 015 20 % N ¥ 4 D. Recombination Rates. In order to convert from the

Number o Lanczos featons collision frequencyw to a more familiar variable such as
Figure 6. Convergence of thé = 0 thermal rate constanT (= 1000 pressureP, we approximate the collisional deactivation rate

K) with _respt_ect to the number of thermal ﬂl_Jx elgenvalues used in the constant by the hard sphere collision theory expressioand
calculation (i.e., the number of Lanczos iterations). Rate constants

6.0

55

50

45

K(T) Q(T) [arb. units]

40

35

computed from botlC(t) (dashed) are shown. also using the ideal gas expression fibf] [yields
TABLE 1: Thermal Rate Constants for the Forward and Bky T
Reverse Three-Dimensional H+ O, == O + OH Reactions in w = kd [M] = 0ga ] —— E (4.3)
Units of cm® molecule® s71 eac au \KT, '
T(KK k k-
5(02) 1 5(1) ml? 1 831(_?1 By use of a typical cross sectian= 10 A2 and introducing
600 265 (ﬁlega 1 89((_113 the appropriate conversion factors, this gives
700 1.88 (£15) 1.80 £11)
800 8.24 -15) 1.74 11) _ 11112
1000 6.66 £14) 1.74 £11) w=10°P —Tﬁ (4.4)
1200 2.71€13) 1.78 €11)
1500 1.10 €£12) 1.85 (11)
2000 4.48 £12) 1.98 (11) with @ in fs71, P in atm, u in atomic units, andl in K. The
aThe number in parentheses is the power of 10. factor 111124 with various collision partners for HOvaries

_ o o from 413 for Sk and 615 for Ar, to 3115 for He and 5893 for
Using theJ-shifting approximation and eq 3.12 for the thermal H,, so we choose an intermediate value of 2000 as a first
equilibrium constant, we obtain the forward and reverse thermal approximation

rate constants listed in Table 1. We find that the rate constants

computed from the autocorrelation functiGp(t) are generally 5000

2—5% greater than those from the cross-correlation functions 0=10"°P, /= (4.5)
Cip(t); the results in Table 1 are mean values. T
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Figure 8. Arrhenius plot of calculated reaction and recombination rate

for P =1 and 10 atm. By taking advantage of current massively parallel computers

(most calculations here were carried out on 64- or 128-node
The effect of collisional recombination on the thermal reaction Cray T3D partitions), we were able to carry out the necessary
and recombination rates is shown in Arrhenius form in Figure long-time propagation (23 ps) of the thermal flux eigenfunc-
8 and as pressure-dependent fall-off curves in Figure 9. Totions. Our current parallel implementation uses a spatial
our knowledge, there are no experimental data for the OH decomposition, with the large DVR grid (64 128 x 32)

+ M system with which to compare, although-HO, + M — partitioned among processors. Improved performance can be
HO, + M fall-off curves have been measured for several third- expected with a mixed approach in which both thermal flux
body species M. In addition to @ OH + M — HO; + M eigenfunctions and coordinate space are partitiGhedror

fall-off curves, high-pressure measurements of the reaction ratesinstance, a calculation using 64 processor nodes for the
(in either direction) would provide a useful test of this theory; propagation of 8 wave functions could dedicate each node to
our results suggest that dampening of the forward and reverse1/8th ofonewave function instead of each node handling 1/64th
reaction rates due to collisional recombination should become of every wave function.
significant for pressures around 1000 atm. We have seen that even in the absence of recombination, the

On the theoretical side, H- O, + M — HO, + M cross-correlation functio@p(t) may provide a useful method
recombination has been studied quantum mechanically by for computing thermal rate constants in the presence of deep
Mandelshtamet al,'® and RRKM calculations have recently intermediate wells. Another suggested appréabhs been to
been reported for this system by Duchovic and co-worRers. take thew — 0 limit of the autocorrelation function integral
However, both studies have focused on the recombination ratewith an exponential damping factor,
(Mandelshtanet al 12 specifically examined only energies below
the O + OH threshold), whereas we are able to study the = 1y “ ot
competition between b())th reaction and recombination f())/r the (1) =[] L'JTOL de "G G
reverse O+ OH + M system. . L . .

which our analysis in section Il would interpret as the zero-
. pressure limit ofkecomdT) + Ko—r(T).

V. Concluding Remarks Given the great dependence on thghifting approximation

We have extended a recently proposed theory for unimo- for extrapolation of thad = 0 reaction and recombination rates,
lecular recombination ratégo treat chemical reactions that and its questionable validity in the present case of a deep well,
proceed via a collision complex that may be stabilized. This rather than a transition state barriér 0 calculations would
theory has been implemented within the framework of flux  be of great benefit. Sincd values as high as 50 or 100
flux correlation function approaches to thermal rate constants contribute significantly to the total rate, calculations for dJl (
and demonstrated for the ® OH — H + O,, HO, system. K) are clearly unfeasible, even if these calculations assume a
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simplified model such as the helicity conserving approximation.
However, one may compute rates for only a few selecfied (
K) values and obtain approximate rates for all othkIK() by
interpolation?
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Appendix A: Alternate Forms of the Rate Expressions

In this appendix we give formulas for the thermal recombina-

tion and reaction rates in terms of the eigenfunctip¥s} and
eigenvalueg E, — iI/2} of H — i€. By introduction of these

eigenfunctions as a basis, the integrals in eqs 2.6a and 2.6b ma

be written as

(W, |y W Fy |9, O

o dt e—wtC — Z e—ﬂ(E|+E|v)/2
Jo S 4 I +T,

w+——+—E—E)
ok (A1)

wheres ands may be either r or p. Using the commutator
expression for the flux operator,

. i~ oa
Fo=#IA.AJ
the flux terms in eq Al can be expressed as

. I'+T, -
ORI\ = —| = — + (B — B)| TP W T

2
OWiE,| ¥ 0(A2)
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