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We extend recent flux-flux autocorrelation function methods for the direct computation of thermal reaction
rate constants and unimolecular recombination rates to the case where both reaction and recombination are
possible. Rather than a single transition state dividing surface, dividing surfaces are placed on both the
reactant (r) and product (p) sides of the intermediate collision complex region. The thermal recombination
rate expression then involves a flux cross-correlation functionCrp(t) in addition to the usual autocorrelation
functionCrr(t), both of which are computed during a single quantum time propagation. This method is applied
to the three-dimensional O+ OH h H + O2 (J ) 0) reactions, employing parallel computation because of
the necessary large basis (218 grid points) and long propagation times (2-3 ps). Thermal rate constants (in
the absence of recombination effects) are presented forT) 500-2000 K, using theJ-shifting approximation
to account for nonzero total angular momentum; good agreement is found with experimental measurements
of both forward and reverse rate constants. Collisional recombination by a bath gas is included via the strong
collision assumption, and rate constants for the competing O+ OH reaction (H+ O2) and recombination
(HO2) channels are calculated as a function of collision frequency, i.e., pressure of the bath gas.

I. Introduction

A great deal of progress has been made in recent years1-5 in
one’s ability to carry out rigorous quantum mechanical calcula-
tions of chemical reaction rates by using flux-flux time
correlation functions.6,7 The primary feature that makes this
approach efficient is that one calculates the rate constant
“directly”, avoiding the need to solve the full state-to-state
reactive scattering problem and then to average the resulting
cross sections over the appropriate distribution of initial and
final states. The approach has vestiges of transition state theory,
and the efficiencies resulting therefrom, but it is an exact
formulation.
It has also recently been shown8 how a quantum mechanical

version of the Lindemann mechanism9 for collisional recom-
bination

can be expressed in terms of the flux correlation function for
the A-B collision (eq 1.1a) provided one uses the strong
collision approximation (SCA) for the energy relaxation step
(eq 1.1b). (It has also been shown10 how this theory can be
generalized to go beyond the SCA, but this requires more than
just the flux correlation function for the A-B collision.) This
formulation eliminates both the ambiguities that arise when one
is required to identify the energies and lifetimes of individual
resonances in the A+ B h AB* collision process, and also
unphysical features that appear in the collision lifetime ap-
proach.11

Two applications of this new quantum theory of recombina-
tion have been reported thus far: Qi and Bowman12 treated the
H + COf HCO recombination; Mandelshtamet al.13 carried
out similar calculations for H+ O2 f HO2 at energies below
the threshold for the O+ OH product channel. In both cases
the quantum time evolution operators needed to construct the
flux correlation functions (see below) were obtained by diago-
nalizing the Hamiltonian (including an absorbing potential in
the asymptotic region) in an L2 basis set.
In this paper we generalize the previous quantum theory of

recombination to include both chemical reaction as well as
recombination, i.e.,

One is thus able to describe simultaneously the recombination
reaction (A+ BC f ABC), the effect of pressure (of the bath
gas M) on the exchange reaction (A+ BC f AB + C), and
the competition between the two.
Application of this theory is then made to the important

reactions

which are central to combustion processes, with the reverse
reaction providing the key radical chain branching step.14,15The
competition between these reactions and the recombination
reactions

which act as chain termination steps, largely determines theX Abstract published inAdVance ACS Abstracts,July 15, 1997.

A + B h AB* (1.1a)

AB* + M f AB + M (1.1b)

A + BCh ABC* f AB + C (1.2a)

ABC* + M f ABC + M (1.2b)

O+ OHh H + O2

O+ OH+ M f HO2 r H + O2 + M

6358 J. Phys. Chem. A1997,101,6358-6367

S1089-5639(97)00362-9 CCC: $14.00 © 1997 American Chemical Society



second explosion limit.15 These reactions are also of great
interest in atomospheric chemistry because of the importance
of the HO2 radical in the catalytic removal of stratospheric
ozone.16

Section II first describes the extension of the earlier quantum
mechanical collisional recombination theory8 for the case where
both reaction and recombination are present. Rather than
utilizing a single dividing surface as is customary for the usual
flux-flux autocorrelation function, one needs to introduce
dividing surfaces on both the reactant (r) and product (p) sides
of the region defining the collision complex and to construct
the r-p cross-correlation function as well as the usual (r-r)
autocorrelation function. Section III describes the approach of
Thompson and Miller2 that we have used to evaluate the flux
correlation functions; here, it is not necessary to diagonalize
the complex Hamiltonian (which would be quite impossible)
but only to propagate (via the split operator algorithm) a
relatively small number of eigenvectors of the Boltzmannized
flux operator, e-âĤ/2F̂e-âĤ/2. Special considerations for ap-
plication on massively parallel computers are also discussed and
are very effective in this case because of the large size of the
basis (218 grid points) and long propagation times (2-3 ps).
Section IV then presents results for the O+ OH system.
Although only calculations for zero total angular momentum
have been performed,J > 0 rates may be included ap-
proximately with the J-shifting approximation,17 enabling
comparison with experimental measurements of both forward
and reverse rate constants over the temperature rangeT) 500-
2000 K. Pressure-dependent fall-off curves for the O+ OH
f HO2 recombination rate, as well as the pressure-induced
dampening of the forward and reverse reaction rate constants,
are readily computed from the same pair of correlation functions.
Finally, it should be emphasized again that although the

present approach does an excellent job of describing the first
step in the Lindemann mechanism, i.e., the bimolecular dynam-
ics in eq 1.1a or eq 1.2a, it treats the second (energy relaxation)
step, eq 1.1b or eq 1.2b, via the comparatively primitive strong
collision approximation. Though the SCA can be made more
realistic by defining18 the collision frequencyω as an effective
(temperature and species dependent) frequency, one can only
incorporate a more complete description of collisions with the
third body M (akin to a classical master equation treatment9c)
by going to the more sophisticated approach in ref 10.

II. Flux Correlation Approach to Thermal Reaction and
Recombination Rates

To generalize the previous quantum version of the Lindemann
mechanism for recombination (eq 1.1), it is useful (as before)
to begin with aclassicaldescription of the processes, i.e., what
would be done in a classical trajectory simulation. Referring
to Figure 1 for the O+ OH f H + O2, HO2 system, the
classical rate constants for reaction H+ O2 and recombination
(HO2) are both given as averages of the reactant flux over a
Boltzmann distribution of initial conditions for classical trajec-
tories

whereFr(p1,q1) is the flux factor related to the reactant dividing
surfacesr in Figure 1 andP(p1,q1) is the probability of either
reaction or recombination as the case may be. Ifhr(q) is the
Heaviside (step) function that is 0(1) for positionsq to the left
(right) of the dividing surfacesr in Figure 1, then the flux factor

Fr is given by

where the last equality applies only for Cartesian coordinates
and momenta. Similarly,hp(q) is the Heaviside function that
is 0(1) for positionsq to the left (right) of the product dividing
surfacesp. The difference of these two Heaviside functions,

is therefore 1 for positionsq betweenthe two dividing surfaces
(i.e., in the “complex” region) and zero outside. Since 1-
e-ωt is the probability of the system experiencing a (deactivating)
collision with the bath gas in the time interval (0,t), the
recombination probability is

whereτ(p1,q1) is the time the trajectory (having begun att ) 0
on sr) exits the complex region. This can also be expressed as

which with an integration by parts becomes

(since Fr(t) ≡ d
dt
hr(q(t)) and Fp(t) ≡ d

dt
hp(q(t))). To have

reaction, on the other hand, the trajectory must exit through
dividing surfacesp and not have suffered a collision before it
reaches it, i.e.,

whereτp is the time the trajectory exits throughsp. This can
be written as

which with an integration by parts becomes

With the recombination and reaction proabilities given by
eqs 2.4c and 2.5c, respectively, eq 2.1 gives the rate constants
in terms of the flux correlation functions,

k(T) )

[Qr(T)]
-1(2πp)-f∫dp1∫dq1 e-âH(p1,q1) Fr(p1,q1)P(p1,q1)

(2.1)

Figure 1. One-dimensional schematic diagram of the interaction
potential for the O+ OHf H + O2 reaction versus reaction coordinate
s. The HO2 collision complex region is bounded by dividing surfaces
on reactant (sr) and product (sp) sides,sr < s < sp.

Fr ) d
dt
hr(q) )

∂hr(q)

∂q
‚p/m (2.2)

hc(q) ) hr(q) - hp(q) (2.3)

Precomb(p1,q1) ) 1- e-ωτ(p1,q1) (2.4a)

Precomb(p1,q1;ω) )∫0∞ dt hc(q(t)) ddt (1- e-ωt) (2.4b)

Precomb(p1,q1;ω) )∫0∞ dt (e-ωt - 1)(Fr(t) - Fp(t)) (2.4c)

Preaction≡ Pprr(p1,q1) ) e-ωτp(p1,q1) (2.5a)

Pprr )∫0∞ dt (1- hp(q(t)))
d
dt
e-ωt (2.5b)

Pprr )∫0∞ dt Fp(t)e-ωt (2.5c)
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where

The transcription of eqs 2.6a and 2.6b to quantum mechanics
simply involves replacing the classical flux correlation functions
of eqs 2.7a and 2.7b by their quantum mechanical counterparts,

As in the previous case,8 it is worth emphasizing that these
correlation functions are properties of the isolated bimolecular
reaction dynamics only and that the collision frequencyω enters
only as a damping factor in the time integrals of these correlation
functions (eq 2.6).
It is not hard to see that eqs 2.6a and 2.6b reduce to previous

results in appropriate limits. For example, if the exchange
reaction channel is closed, thenCrp(t) f 0, and eq 2.6 reduces
to the earlier quantum expression for the recombination rate.
Also, in the limit of zero pressure (i.e.,ω ≡ 0), the recombina-
tion rate vanishes, and eq 2.6b, for the reaction rate is

where we have noted that the two dividing surfaces can be taken
to be the same or different for an isolated bimolecular reaction.
As will be seen in section IV, though, for cases where a long-
lived collision complex is formed, as in the present example,
use of eq 2.9a is more stable numerically, since it avoids
cancellation of two large and approximately equal contributions.
The equivalence of eqs 2.9a and 2.9b also means that the
collisional factor e-ωt - 1 in eq 2.6a can formally be replaced
by e-ωt, but for numerical stability it is better to stay with the
original version.
Finally, we note that the earlier quantum recombination (but

nonreactive) calculations by Qi and Bowman12 and by Man-
delshtam et al.13 were carried out in a time-independent
approach: the Hamiltonian plus a negative imaginary (absorb-
ing) potential,Ĥ - iε̂, was diagonalized in anL2 basis, the traces
in eqs 2.8a and 2.8b carried out in the basis of these eigen-
functions, and the time integral in eqs 2.6a and 2.6b then
(trivially) evaluated. Though we do not use this approach in
our present calculations, the Appendix gives the appropriate
formulas for such an approach to the reaction/recombination
rates of eqs 2.6a and 2.6b.

III. Computational Details

A. Reaction Coordinates and HO2 Potential Energy
Surface. Jacobi coordiates for the H+ O2 arrangement are
used, as shown in Figure 2. Herer is the O-O bond distance,

R the distance between the H atom and O2 center-of-mass, and
γ the angle betweenR andr . In this coordinate system, theJ
) 0 Hamiltonian is given by

wherel̂ is the orbital angular momemtum operator for H rotation
about the O2 center-of-mass, andµR and µr are the reduced
masses associated with theR and r coordinates, respectively.
We use the DMBE IV potential energy surface (PES) of

Pastranaet al.19 on which several quasiclassical,19,20 quantum
mechanical,13,21-25 and transition state theory24,26 studies have
been carried out. Relative to the asymptotic H(2S) +
O2(3Σg

-) channel, the HO2(2A′′) well depth is-2.378 35 eV,
and the O(3P) + OH(2Π) channel is at 0.581 51 eV. The long-
range O+ OH interaction is dominated by dipole-quadrupole
forces,27 which favor a linear OH‚‚‚O geometry and culminate
in a weakly stable (-0.098 eV) hydrogen-bonded structure at
an H‚‚‚O distance of 3.821a0. A shallow barrier, 0.027 eV
above the OH‚‚‚O minimum, precedes the deep HO2 well, with
the H atom rotating out to a HOO angle of 40.2° at the barrier
and 104.29° at the HO2minimum. No barrier is found between
the HO2 well and H+ O2 products.
A slight adjustment of the DMBE IV PES, involving a simple

linear rescaling of the coordinates, has been suggested recently
but apparently not used yet.19 Kendrick and Pack have
developed an entirely new multivalued PES29 intended to better
describe the system near conical intersections and permit the
study of geometric phase and nonadiabatic effects.30 We neglect
these effects in using the single DMBE IV surface.
B. Basis Set. As in earlier work,2,22 we employ a discrete

variable representation (DVR) basis set of grid points.31-33 The
radialR and r coordinates are represented by equally spaced
points appropriate for a sinc function DVR;34 however, for the
present parallel implementation (see below), taking these points
as a Fourier grid representation is advantageous. The angular
coordinateγ is represented by a Gauss-Legendre DVR, using
only odd functions because of the symmetry requirements upon
interchange of the two oxygen atoms.35 We find that a fixed
basis size of 64× 128× 32 grid points (R× r × γ) is sufficient,
with R ∈[0.1, 7.6] andr ∈[2, 8]. The restriction to powers of
2 arises from both the Fourier representation and the data-
parallel implementation described below.
This grid size corresponds to roughly 20 grid points per

thermal de Broglie wavelength,

at T ) 500 K andNB = 10 atT ) 2000 K, in bothR and r
coordinates. (∆x denotes the spacing between grid points.) We

krecomb(T) ) [Qr(T)]
-1∫0∞ dt (e-ωt - 1)(Crr(t) - Crp(t))

(2.6a)

kprr(T) ) [Qr(T)]
-1∫0∞ dt e-ωtCrp(t) (2.6b)

Crr(t) ) (2πp)-f∫dp1∫dq1 e-âH(p1,q1)Fr(p1,q1)Fr(p1,q1,t)

(2.7a)

Crp(t) ) (2πp)-f∫dp1∫dq1 e-âH(p1,q1)Fr(p1,q1)Fp(p1,q1,t)

(2.7b)

Crr(t) ) Tr[e-âĤ/2F̂r e
-âĤ/2 eiĤt/pF̂r e

-iĤt/p] (2.8a)

Crp(t) ) Tr[e-âĤ/2F̂r e
-âĤ/2 eiĤt/pF̂p e

-iĤt/p] (2.8b)

lim
ωf0

kprr(T) ) [Qr(T)]
-1∫0∞ dt Crp(t) (2.9a)

) [Qr(T)]
-1∫0∞ dt Crr(t) (2.9b)

Figure 2. Jacobi coordinates for H+ O2.

Ĥ ) - p
2µR

∂
2

∂R2
- p
2µr

∂
2

∂r2
+ ( 1

2µRR
2

+ 1

2µrr
2) l̂2 + V̂(R,r,γ)

(3.1)

NB ) 2π
∆x(2µkBT

p2 )-1/2

(3.2)
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begin to encounter convergence problems withNB < 10, as also
observed in earlier applications.2 We also note the comparable
grid size of 60× 213 × 32 used in the calculation of the
cumulative reaction probabilityN(E) for this reaction.22

C. Calculation of Flux Correlation Functions. The
correlation functionsCrr(t) andCrp(t) are most easily calculated
by evaluating the traces in terms of the eigenfunctions of the
Boltzmannized (thermal) flux operator36

that is relative to the reactant dividing surfacesr. Denoting the
eigenfunctions and corresponding eigenvalues by|i〉 and λi,
respectively, we have

where|i(t)〉 denotes the thermal flux eigenfunction|i〉 propagated
to time t,

Similarly,

so that both correlation functions are obtained by propagating
the same set of thermal flux eigenfunctions.
The Lanczos algorithm37 is a useful method for finding the

largest eigenvalues (and associated eigenvectors) ofF̂r(â).2
Starting with a random initial vector, a Krylov space is formed
by successive application ofF̂r(â), with complete orthogonal-
ization at each step. Diagonalization of the tridiagonal matrix
representation ofF̂r(â) in this Krylov basis yields the largest
(in absolute value) eigenvalues and their associated eigenvectors.
These eigenvalues are monitored at each Lanczos iteration, and
the procedure is halted whenever the sum of absolute values of
these eigenvalues changes by a small fraction, such as 10-4 or
10-3. The eigenvectors in the original coordinate grid repre-
sentation are then constructed by taking appropriate linear
combinations of the Krylov vectors.
As in previous work,2 we find the most convenient expression

for the flux operator to be

For a dividing surface which is only a function ofRandr, this
reduces to

which is readily evaluated in either sinc-DVR or finite difference
representations of the 1D operatorsT̂R and T̂r.
The (O+ OH) reactant dividing surface is chosen atr )

6.5a0, beyond the O-O distance (r ) 5.663a0) at the hydrogen-
bonded minimum. The H+ O2 product dividing surface is most

conveniently defined in terms of either theR Jacobi coordinate
(e.g.,R) 6a0) or the shortest O-H distance (e.g.,rOH ) 3.5a0).
D. Time Propagation and Use of Absorbing Potentials.

In order to perform the propagation, we use the split operator
algorithm.38 Writing the Hamiltonian in eq 3.1 as

we can form the split operator propagator

The 1D free-particle propagator e-iT̂R∆t/p is applied by using the
fast Fourier transform (FFT) to convert from positionR to
momentum pR representation, in which the propagator is
diagonal, and then a second FFT to return to position space.
The e-iT̂r∆t/p term is handled in a similar fashion, while the
angular propagator e-iT̂γ∆t/p is done using the Gauss-Legendre
DVR.
This choice of the split operator expression is determined

primarily by (parallel) computational considerations; although
the potential referenced expression generally permits a slightly
larger time step than the kinetic referenced expression of eq
3.8 under normal circumstances,39 it would require two ap-
plications of each 1D kinetic propagator. Since these terms
involve nonlocal operations, from a computational standpoint
it is much more desirable to split the localizedV̂ - iε̂ operator
instead. Either way, we would have to split the angular kinetic
term e-iT̂γ∆t/p, but fortunately, the number of angular DVR points
required is generally small.
We find that a timestep as long as∆t ) 20 or 30 au (0.5-

0.7 fs) is adequate for the real-time propagation, while a slightly
smaller time step∆t ) 10 au is generally used for the imaginary-
time propagation of the Boltzmann operator e-âĤ/2.
To avoid unphysical reflection from the boundaries of the

DVR grid, we employ absorbing potentialsετ in each arrange-
ment τ, taken as a function of some coordinaterτ for each
arrangement (see Figure 1). Two convenient choices are the
translational Jacobi coordinate for each arrangement,Rτ, or the
Jacobi coordinatesR andr in which the grid is set up. For the
form of the absorbing potentials, the quartic potential has proven
to be a robust choice,

wherer0,τ and rmax,τ are the starting and ending points of the
absorbing potential in theτ arrangement. Typical parameters
areλ ) 1 eV and an absorbing potential width ofrmax,τ - r0,τ
) 1a0.
E. Parallel implementation. In order to implement the

present method on massively parallel computers, we must first
decide the basic quantity to parallelize. In this case, there are
two obvious choices: either individual thermal flux eigenfunc-
tions may be placed on separate processors, requiring much
interprocessor communication during the Lanczos process but
subsequently allowing independent propagation of the thermal
flux eigenfunctions, or the DVR grid (i.e., coordinate space
itself) may be partitioned among processors. In the former
approach, each processor stores (and propagates) one or more
complete thermal flux eigenfunctions, while in the latter case
each processor contains a segment (corresponding to its portion
of coordinate space) of every thermal flux eigenfunction so that
the propagations involve a joint effort among processors.

F̂r(â) ) e-âĤ/2F̂r e
-âĤ/2

Crr(t) ) Tr[e-âĤ/2F̂r e
-âĤ/2 eiĤt/pF̂r e

-iĤt/p] (3.3a)

) ∑
i

〈i|e-âĤ/2F̂r e
-âĤ/2 eiĤt/pF̂r e

-iĤt/p|i〉 (3.3b)

) ∑
i

λi〈i|eiĤt/pF̂r e-iĤt/p|i〉 (3.3c)

) ∑
i

λi〈i(t)|F̂r|i(t)〉 (3.3d)

|i(t)〉 ) e-iĤt/p|i〉 (3.4)

Crp(t) ) ∑
i

λi〈i(t)|F̂p|i(t)〉 (3.5)

F̂ ) i
p
[Ĥ, h(s(q))] (3.6a)

F̂ ) i
p
[T̂R, h(s(q))] + i

p
[T̂r, h(s(q))] (3.6b)

Ĥ ) T̂R + T̂r + T̂γ + V̂ (3.7)

e-i(Ĥ-iε̂)∆t/p =

e-i(V̂-iε̂)∆t/2p e-iT̂γ∆t/2p e-iT̂R∆t/p e-iT̂r∆t/p e-iT̂γ∆t/2p e-i(V̂-iε̂)∆t/2p

(3.8)

ετ(rτ) ) λ( rτ - r0,τ
rmax,τ - r0,τ)

4

(3.9)
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Since we expect (and show below that it is indeed the case)
that a relatively small number of thermal flux eigenfunctions is
needed, the former approach of assigning a separate eigenfunc-
tion to each processor would be limited to a number of
processors equal to the number of eigenfunctions, whereas we
would hope to take full advantage of the 128 or 256 processors
commonly available on most massively parallel computer
systems. Thus, we adopt the latter perspective and partition
coordinate spaceamong processors.
In order to proceed in this manner, we must minimize the

interprocessor communication required during application of the
flux and Hamiltonian propagation operators. Since the potential
operator is entirely local in the DVR grid basis, the only
remaining question is the kinetic operators. In previous work
on the parallel implementation of direct cumulative reaction
probability calculations,40 we have found a five- or seven-point
finite difference representation of the second derivative terms
rather than the full-fledged sinc function DVR,34 to provide an
adequate balance between data locality and accuracy for radial
degrees of freedom. A seven-point finite difference approxima-
tion is thus used for theT̂R and T̂r operators in eq 3.6b.
However, for the time evolution part of the calculation, the

necessary time step for finite-difference schemes is too short
to be of practical use. Instead, we have chosen the fast Fourier
Transform (FFT) approach to switch between coordinate and
momentum representations, as described following eq 3.8.
Although the FFT approach, like the sinc-function DVR,
requires an “all-to-all” communication across theRandr degrees
of freedom and thus is highly nonlocal, FFT algorithms are
inherently parallel41 and thus can be quite efficient for our
purposes. (This is only true for densely connected architectures,
in particular hypercube networks; communication bottlenecks
may arise on loosely connected architectures such as rings and
meshes.)
F. Reactant Partition Functions. The H(2S) + O2(3Σg

-)
partition function is given by

whereQelec ) 6/2 is the electronic degeneracy divided by the
two equivalent arrangements (since the Gauss-Legendre DVR
is restricted to one half-plane),Qvib and Qrot are the usual
vibrational and rotational partition functions, andQtrans) (µkBT/
(2πp2))3/2 is the translational partition function per unit volume
for the relative motion of H and O2.
The O(3P) + OH(2Π) partition function also includes

electronic factors accounting for the3P2,1,0spin-orbit states of
O and the2Π3/2,1/2OH spin doublet:27,42

However, the OH rotational partition function is somewhat
problematic, since at low energies the coupling of spin and
orbital angular momenta is best described by Hund’s case a,
while higher rotational energy levels are more nearly ap-
proximated by case b.43 We have computed rovibrational
partition functions using either case a, involving half-integral
rotational quantum numbersj, or case b, with integral quantum
numbersN ) 1, 2, 3, ... Since these results differ by a few
percent, the rate constants reported below use a simpler, albeit
indirect approach: dividing the H+ O2 partition function by
the H+ O2 f O + OH equilibrium constant, which is given
within a tenth of a percent over the temperature range of interest
by the expression44

An additional reason for taking this indirect approach is that
the O(3P) + OH(2Π) reactants correlate with both the2A′′
ground surface and2A′ first excited surface of HO2, which in
turn correlate with the H(2S) + O2(3Σg

-) and H(2S) + O2(1∆g)
products, respectively. At high enough temperatures (probably
including those considered here), this singlet oxygen channel
via HO2(2A′) can become significant and must be taken into
account.45,46 Since this is beyond the scope of the present work,
we adopt the above approach of using the experimental
equilibrium constant to define an effective partition function
for the O+ OH reactants.
G. J-Shifting. In the J-shifting approximation,17 it is

assumed that the overall rotation is decoupled from internal
motion and, therefore, that its effect is merely to add a constant
rotational energy termεrot

JK to theJ ) 0 Hamiltonian of eq 3.1.
For thermal rate constants, this corresponds to the multiplication
of theJ ) 0 rate by an additional rotational partition function
for the entire complex,

We estimate the rotational energiesεrot
JK by treating the HO2

complex as a rigid rotor fixed at its equilibrium geometry, with
rotational constantsAq ) 18.94 cm-1, Bq ) 0.589 cm-1, and
Cq ) 0.572 cm-1. Nearly identical results are obtained using
either the classical expression forQrot

q ,

or numerical evaluation of eq 3.13 with symmetric top rotational
constantsAq andBhq ) (Bq + Cq)/2. At T ) 500 and 2000 K,
the sum over the total angular momentum in eq 3.13 must run
to J ) 52 and 105, respectively, in order to obtain 99% of the
total. The largeQrot

q (T) values, ranging from 4549 to 36 375
over this temperature range, also indicate how miniscule theJ
) 0 contribution is and, thus, how important it is to have an
accurate estimate of theJ > 0 contributions.

IV. Results and Discussion

A. Thermal Flux Eigenfunctions. The required computa-
tional effort will be proportional to two factors: the number of
thermal flux eigenvectors that must be propagated and the
amount of propagation time required. Owing to the large
number of HO2 bound states and resonances, we anticipate a
large propagation time; we will return to this issue below.
In one dimension, the thermal flux operator has only two

nonzero eigenvalues, one positive and one negative, with
identical magnitudes, corresponding to flux in the forward and
backward directions.36 Additional degrees of freedom lead to
a set of activated complex states in the transition state theory
picture; the nonzero eigenvalues still occur in pairs, one for
each accessible state of the activated complex. Figure 3 shows
the magnitudes of these eigenvalues for several temperatures
relative to the largest eigenvalue at each temperature. The
number of eigenvalue pairs required is seen to increase from
10 or 12 atT ) 600 K to nearly 25 atT ) 2000 K. Thus, the
total number of eigenfunctions that must be propagated is 20-
50, not a great deal more than is often required. If a much
greater number were necessary, it would make sense to employ
a different parallelization scheme and do thepropagations

Qr(T) ) QelecQvibQrotQtrans (3.10)

Qelec
O Qelec

OH ) [5 + 3 e-228K/T + e-326K/T][2 + 2 e-205K/T]
(3.11)

Keq(T) ) 2.7× 10-3T0.4 e8720K/T (3.12)

Qrot
q ) ∑

J)0

∞

(2J+ 1) ∑
K)-J

J

e-ârotεJK (3.13)

Qrot
q = (π(kBT)

3

AqBqCq)1/2 (3.14)
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separately on different processors rather than dividing eachwaVe
functionamong processors.
B. Flux-Flux Correlation Functions. The flux-flux

autocorrelation functionCrr(t) and cross-correlation function
Crp(t) are shown in Figure 4 forT ) 1200 K. Both correlation
functions are scaled byCrr(0); the initial decay of the autocor-
relation function occurs within a few femtoseconds (∼pâ = 6
fs),7 so the plot ofCrr(t) is magnified to show the subsequent
oscillations. A significant amount of recrossing is observed,
with a highly structured negative lobe lasting for approximately
300 fs, followed by smaller positive and negative lobes
corresponding to breakup of the metastable HO2 complex into
products and reactants, respectively.

This recrossing fraction can be quantified by comparing the
area under the initial positive lobe (up to the first zero att0)
with the total area

This is readily identified as the transmission coefficient cor-
rection to the quantum transition state theory proposed by Tromp
and Miller,47 which relates the thermal rate constant to the area
under the initial positive lobe of the flux autocorrelation
function,

so that the true quantum rate constant isk(T) ) κ(T)kQMTST(T).
From theT ) 1200 K autocorrelation function in Figure 4, we
find κ = 0.310, meaning that 69% of the initial flux into the
complex region recrosses back to reactants. This of course is
dependent upon the position of the reactant-dividing surface,
but similar values are obtained for several reasonable choices.
As the temperature is increased,κ increases slightly andt0
decreases slightly. Miller has found a similar recrossing fraction
in his quasiclassical trajectory calculations, where 60-68% of
the HO*2 complexes recross to give O+ OH reactants over the
500-2000 K temperature range considered here.48

(The even larger recrossing for the H+ O2 reactants,>99%,
causes enormous cancellation in the time integral ofCrr(t) for
this direction. The magnitude ofκ(T) for this uphill reaction
can be estimated by the Boltzmann factore-â∆E, which is
roughly 10-6 at 500 K and∼0.03 at 2000 K. Therefore, the
present work is limited to the study of O+ OH + M reaction
and recombination and does not consider that of H+ O2 +
M.)
The cross-correlation function is initially zero, until the

propagated (reactant) thermal flux eigenfunctions reach the
product dividing surface and a large positive lobe occurs, lasting
several hundred femtoseconds. Since a negative contribution
to Crp(t) corresponds to the unlikely event of H+ O2 products
“turning around” and re-entering the HO2 complex region, no
such lobe is expected, nor is one observed.
C. Thermal Rate Constants. From eqs 2.9a and 2.9b, the

J ) 0 thermal rate constant may be obtained from the time
integrals of eitherCrr(t) or Crp(t), as shown in Figure 5. As
expected, the abundant recrossing in the autocorrelation function
leads to a great deal of cancellation in the time integral, while
the integral of the cross-correlation function increases nearly
monotonically. This seems to suggest that use ofCrp(t) may
be a more efficient approach to the thermal rate constant for
cases where significant recrossing inCrr(t) occurs. At 1 ps the
two rates agree with each other (and with the final converged
rates) to a few percent, probably the ultimate accuracy obtainable
with such calculations. All calculations reported here have been
propagated a bit further, to 3 or 4 ps, to lessen the discrepancy
between eqs 2.9a and 2.9b.
As a check of the validity of using the thermal flux

eigenvalues as a measure of the number of required eigenvectors,
Figure 6 shows theJ ) 0 rate constant versus number of
Lanczos iterations (or equivalently, number of thermal flux
eigenfunctions) atT) 1000 K. The rate (computed from either
Crr(t) or Crp(t)) appears to converge with around 30 iterations,
in good agreement with the 15 pairs of significant eigenvalues
in Figure 3.

Figure 3. Positive thermal flux eigenvalues forT ) 600, 800, 1000,
1200, 1600, and 2000 K. Note that the eigenvalues occur in( pairs so
that the actual number of eigenvalues required is twice that shown.

Figure 4. Flux-flux correlation functionsCrr(t) (top panel) andCrp(t)
(bottom panel) for the OH+ O f H + O2 reaction atT ) 1200 K.
Both correlation functions are shown relative to the reactant flux
autocorrelation function at zero time,Crr(0).

κ(T) )
∫0∞dt Crr(t)

∫0t0dt Crr(t)
(4.1)

kQMTST(T) ) [Qr(T)]
-1∫0t0 dt Crr(t) (4.2)
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Using theJ-shifting approximation and eq 3.12 for the thermal
equilibrium constant, we obtain the forward and reverse thermal
rate constants listed in Table 1. We find that the rate constants
computed from the autocorrelation functionCrr(t) are generally
2-5% greater than those from the cross-correlation functions
Crp(t); the results in Table 1 are mean values.

In Figure 7 we compare our thermal rate constants with
experimentally measured rates for the H+ O2 (refs 49-51)
and O+ OH (refs 52 and 53) reactions. Good agreement is
found over the entire temperature range, with the high-
temperature calculations lying in the middle of the widely
scattered experimental measurements. At lower temperatures,
the present results underestimate the experimental rates (which
are known quite accurately). Whether this is due to the
J-shifting approximation or deficiencies in the potential energy
surface (including its treatment as a single electronic surface)
is unknown. At temperatures below 500 K, we have been
unable to obtain converged thermal eigenvalues and eigenfunc-
tions; these numerical difficulties are evident at 500 K but are
unlikely to account for the entire discrepancy between experi-
mental and calculated rates.
D. Recombination Rates. In order to convert from the

collision frequencyω to a more familiar variable such as
pressureP, we approximate the collisional deactivation rate
constant by the hard sphere collision theory expressionσVj, and
also using the ideal gas expression for [M] yields

By use of a typical cross sectionσ ) 10 Å2 and introducing
the appropriate conversion factors, this gives

with ω in fs-1, P in atm,µ in atomic units, andT in K. The
factor 11112/µ with various collision partners for HO2 varies
from 413 for SF6 and 615 for Ar, to 3115 for He and 5893 for
H2, so we choose an intermediate value of 2000 as a first
approximation

Figure 5. Convergence of theJ ) 0 thermal rate constant (T ) 1200
K) versus time for the two flux-flux correlation functions shown in
Figure 4. The solid curve is forCrr(t) and the dashed curve forCrp(t).

Figure 6. Convergence of theJ ) 0 thermal rate constant (T ) 1000
K) with respect to the number of thermal flux eigenvalues used in the
calculation (i.e., the number of Lanczos iterations). Rate constants
computed from bothCrr(t) (dashed) are shown.

TABLE 1: Thermal Rate Constants for the Forward and
Reverse Three-Dimensional H+ O2 h O + OH Reactions in
Units of cm3 molecule-1 s-1

T (K) k1 (T) k-1 (T)

500 1.50 (-17)a 1.83 (-11)
600 2.65 (-16) 1.89 (-11)
700 1.88 (-15) 1.80 (-11)
800 8.24 (-15) 1.74 (-11)
1000 6.66 (-14) 1.74 (-11)
1200 2.71 (-13) 1.78 (-11)
1500 1.10 (-12) 1.85 (-11)
2000 4.48 (-12) 1.98 (-11)

a The number in parentheses is the power of 10.

Figure 7. Arrhenius plot of calculated and experimental thermal rate
constants for the forward and reverse reactions. Present results (Table
1) are shown as a solid line, while the different symbols refer to different
experiments as indicated in the legend. To reduce clutter, the O+ OH
rate constants reported by Pirraglia et al.50 are shown, although their
actual rate measurements are for the H+ O2 reaction.

ω ) kdeact[M] ) σx8kBT

πµ (PkT) (4.3)

ω ) 10-6Px11112/µ
T

(4.4)

ω ) 10-6Px2000
T

(4.5)
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The effect of collisional recombination on the thermal reaction
and recombination rates is shown in Arrhenius form in Figure
8 and as pressure-dependent fall-off curves in Figure 9. To
our knowledge, there are no experimental data for the O+ OH
+ M system with which to compare, although H+ O2 + M f
HO2 + M fall-off curves have been measured for several third-
body species M. In addition to O+ OH + M f HO2 + M
fall-off curves, high-pressure measurements of the reaction rates
(in either direction) would provide a useful test of this theory;
our results suggest that dampening of the forward and reverse
reaction rates due to collisional recombination should become
significant for pressures around 1000 atm.
On the theoretical side, H+ O2 + M f HO2 + M

recombination has been studied quantum mechanically by
Mandelshtamet al.,13 and RRKM calculations have recently
been reported for this system by Duchovic and co-workers.54

However, both studies have focused on the recombination rate
(Mandelshtamet al.13 specifically examined only energies below
the O + OH threshold), whereas we are able to study the
competition between both reaction and recombination for the
reverse O+ OH + M system.

V. Concluding Remarks

We have extended a recently proposed theory for unimo-
lecular recombination rates8 to treat chemical reactions that
proceed via a collision complex that may be stabilized. This
theory has been implemented within the framework of flux-
flux correlation function approaches to thermal rate constants
and demonstrated for the O+ OH f H + O2, HO2 system.

By taking advantage of current massively parallel computers
(most calculations here were carried out on 64- or 128-node
Cray T3D partitions), we were able to carry out the necessary
long-time propagation (2-3 ps) of the thermal flux eigenfunc-
tions. Our current parallel implementation uses a spatial
decomposition, with the large DVR grid (64× 128 × 32)
partitioned among processors. Improved performance can be
expected with a mixed approach in which both thermal flux
eigenfunctions and coordinate space are partitioned.55 For
instance, a calculation using 64 processor nodes for the
propagation of 8 wave functions could dedicate each node to
1/8th ofonewave function instead of each node handling 1/64th
of eVery wave function.
We have seen that even in the absence of recombination, the

cross-correlation functionCrp(t) may provide a useful method
for computing thermal rate constants in the presence of deep
intermediate wells. Another suggested approach56 has been to
take theω f 0 limit of the autocorrelation function integral
with an exponential damping factor e-ωt,

which our analysis in section II would interpret as the zero-
pressure limit ofkrecomb(T) + kprr(T).
Given the great dependence on theJ-shifting approximation

for extrapolation of theJ) 0 reaction and recombination rates,
and its questionable validity in the present case of a deep well,
rather than a transition state barrier,J > 0 calculations would
be of great benefit. SinceJ values as high as 50 or 100
contribute significantly to the total rate, calculations for all (J,
K) are clearly unfeasible, even if these calculations assume a

Figure 8. Arrhenius plot of calculated reaction and recombination rate
for P ) 1 and 104 atm.

Figure 9. Pressure-dependent fall-off curves of the O+ OH reaction
and recombination rates forT ) 500 and 2000 K.

kprr(T) ) [Qr(T)]
-1 lim

ωf0
∫0∞ dt e-ωt Crr(t) (5.1)
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simplified model such as the helicity conserving approximation.
However, one may compute rates for only a few selected (J,
K) values and obtain approximate rates for all other (J, K) by
interpolation.2
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Appendix A: Alternate Forms of the Rate Expressions

In this appendix we give formulas for the thermal recombina-
tion and reaction rates in terms of the eigenfunctions{Ψl} and
eigenvalues{El - iΓl/2} of Ĥ - iε̂. By introduction of these
eigenfunctions as a basis, the integrals in eqs 2.6a and 2.6b may
be written as

wheres and s′ may be either r or p. Using the commutator
expression for the flux operator,

the flux terms in eq A1 can be expressed as
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